






所以,GPZ(II)盆式橡胶支座是能满足大的支承反力,大的水平位移,大的转角要求的新型产品橡胶支座在安装使用过程中常见异常现象的分析与排除橡胶支座是建筑结构的一个重要组成部分,是连接建筑上部结构和下部结构的重要构件,是直接影响建筑寿命与行车安全的关键。
之后又下达了进行圆形板式橡胶支座的试验研究和对矩形板式橡胶支座的补充试验研究课题,交通部公路规划设计院又分别委托铁道部科学研究院在500T和2000T压力试验机上进行了批量圆形、矩形和较大规格的板式橡胶支座试验,在取得大量可靠试验数据的基础上,对原规范中相关矩形板式橡胶支座的一些设计参数进行了修订,并将圆形板式橡胶支座试验和对矩形板并于1993年发布了交通行业标准《公路建筑板式橡胶支座》。

橡胶支座设计需以预加应力原理为基础,通过合理的结构布局实现荷载传递与变形适应:固定橡胶支座的布设应优先选择结构中部位置,可最小化内部应力引起的合力作用,确保支座承受上部结构位移反作用力时的稳定性;针对单跨或双跨斜桥,橡胶支座位移方向需平行于车道中心线,而非垂直于桥墩或桥台,避免位移受限导致支座损坏。
磨擦系数:常温型μ≤0.04,耐寒型μ≤0.06GPZ橡胶支座的压缩变形值按规定不得大于支座总高度的2%,盆环的径向变形不得大于盆环外径的0.5‰因此,我们生产的GPZ系列公路建筑盆式橡胶支座分为GPZ(依据JT3141-90)和GPZ(Ⅱ)(依据GT391-1999)以及QPZ,QZ,SH-PZ,KPZ,GPZ(KZ)几大系列。

硫化工艺控制:硫化过程中的时间与温度参数至关重要。不同规格的橡胶支座需要匹配相应的硫化时间,若未能达到规定时间,将导致内部胶料硫化不充分而形成"夹生"现象,严重影响产品最终质量。
在管线设计方面,给排水、采暖主管穿越滑移层时,其设计的合理性直接影响到整个建筑系统的正常运行和抗震性能。为了确保在地震等灾害发生时,这些管线不会因建筑结构的位移而受损,需采用多组橡胶减震柔性接头。这些接头的位移补偿量必须≥隔震缝宽度 + 20% 安全裕量,这是基于对大量地震灾害案例的研究和结构动力学分析得出的关键参数。以某高层住宅建筑为例,其隔震缝宽度为 50mm,根据上述要求,选用的橡胶减震柔性接头位移补偿量设计为 65mm,能够有效应对地震时可能产生的水平位移 。同时,接头采用法兰连接方式,这种连接方式具有良好的密封性和稳定性,能够确保在管道内部压力变化和外部震动的情况下,依然保持可靠的连接 。此外,为了防止接头在地震时发生过度位移而导致损坏,还配置了限位装置,限位装置通过精确的力学计算和设计,能够在地震位移达到一定程度时,限制接头的进一步位移,从而保护整个管线系统的安全,确保在地震期间给排水、采暖等基本生活设施的正常运行 。
