






GB527-83硫化橡胶物理试验方法的一般要求GB/T528-92硫化橡胶和热塑性橡胶拉伸性能的测定GB700-88碳素结构钢GB1033-86塑料密度和相对密度试验方法GB/TL039-92塑料力学性能试验方法总则GB/T1O40-92塑料拉伸性能试验方法GB/TLL84-1996形状和位置公差未注公差的规定GB/T1682-94硫化橡胶低温脆性的测定——单试样法GB/T18O4-92一般公差线性尺寸的未注公差GB2041-89黄铜板GB/T3280-92不锈钢冷轧钢板GB3512-83橡胶热空气老化试验方法GB6031-85硫化橡胶国际硬度的测定(30一85IRHD常规试验法)GB7233-87铸钢件超声探伤及质量评级方法GB7759-87硫化橡胶在常温和高温下恒定形变压缩永久变形的测定GB7762-37硫化橡胶耐臭氧老化试验静态拉伸试验方法GB/T8923-88涂装前钢材表面锈蚀等级和除锈等级GB/11352-89一般工程用铸造碳钢件JB/T5943-91工程机械焊接件通用技术条件HG/T2502-935201硅脂橡胶支座铁路建筑支座采购请到建筑支座的布置建筑支座的布置主要和建筑的结构形式有关。
地震作为严重影响人类社会的自然灾害,始终是建筑工程领域重点攻克的课题。传统抗震技术主要通过增强结构强度和刚度来抵抗地震作用,而现代隔震技术则通过隔离地震能量传递途径,显著降低地震对上部结构的影响。在众多隔震系统中,隔震橡胶支座已成为研究和应用的主流方向,在日本、美国等多地震国家得到广泛应用,并经过多次强烈地震的实际考验,证实在高烈度地震区具有良好的隔震效果。

在公路建筑上使用板式橡胶支座时,应严格遵循《公路钢筋混凝土及预应力混凝土桥涵设计规范》进行设计与安装,确保符合行业标准要求。
智能支座系统的出现,为建筑和桥梁结构的安全监测与维护带来了革命性的变化。集成形状记忆合金(SMA)元件的智能支座,具备卓越的主动复位功能。在地震等灾害发生后,SMA 元件能够迅速响应,通过自身的形状变化,使支座自动复位,复位精度可达≤2mm,确保结构在震后能够尽快恢复正常使用状态 。

橡胶支座的质量从根本上取决于生产过程的关键控制点:
1965 年,上海橡胶制品研究所、上海市政工程研究所、上海市政设计院联合启动板式橡胶支座研制,突破 “橡胶 - 钢板硫化粘合” 关键技术;1970-1980 年,先后在广东(广深公路桥)、上海(南浦大桥引桥)、山东(济青高速桥)等省份的公路桥应用,开启我国橡胶支座规模化推广序幕,目前已成为中小跨径结构的主流支座形式。
