






围绕支座上预埋的螺栓套筒等进行必要的钢筋绑扎与混凝土浇筑。
近年来高速铁路在我国迅速发展,到2030年将扩展为八纵八横的区域性路网格局。为保证高速行车的平顺性,我国高速铁路多采用“以桥代路”的思想,建筑在线路中占比高。同时,我国地震活动频繁,对跨区域性的高铁路网构成严重的潜在威胁。目前,减隔震技术已成为提高震区建筑抗震能力的重要手段,而我国的建筑减隔震技术发展较晚,在设计方法上有较大的发展空间。因此,本文以高速铁路减隔震建筑为研究对象,将减隔震技术与基于性能的抗震设计思想相结合,提出了适用于高速铁路减隔震建筑的性能设计方法,主要研究工作如下:

支座作为建筑结构体系中的关键连接构件,承担着传递荷载、适应变形、保障结构整体稳定性等多重功能。随着建筑技术的持续发展,各类支座的性能不断优化,应用领域也日益拓宽,尤其在应对复杂结构形式和抗震隔震需求中,支座技术发挥了关键支撑作用。
橡胶支座采用多层钢板与橡胶交替叠合的结构形式,兼具足够的竖向刚度以支撑建筑物重量,以及良好的水平柔性以适应地震引起的变形。其中,四氟板式橡胶支座在传统橡胶支座基础上增设聚四氟乙烯板,显著降低了摩擦系数,提高了支座的滑动性能。

建筑隔震技术原理:通过在结构底部或层间设置隔震支座(如橡胶隔震支座),可大幅延长结构的基本自振周期,使其避开地震动的卓越周期区域,从而显著降低上部结构的地震反应,确保主体结构在地震中维持弹性工作状态。此项技术使结构设计对于传统的高度限制、安全距离等约束条件得以适当放宽,尤其适用于高层建筑的减震需求。
根据这些性能要求,板式橡胶支座在垂直方向应具有足够的刚度,从而保证在大竖向荷载作用下支座产生较小的压缩变形,一般要求支座的大压缩变形不得超过橡胶厚度的橡胶支座在水平方向则应具有一定柔性,以适应车辆制动力、温度、混凝土收缩和徐变及活载作用下梁体的水平位移。
